پروژه OS project MLP
نوشته شده توسط : دریای فایل

برای دانلود سریع فایل کافیست روی دکمه‌ی پایین کلیک کنید

برای دانلود اینجا کلیک فرمایید ( پروژه OS project MLP )



· • • • • • • • °° • پروژه  پروژه دانلود پروژه سیستم عاملی شبکه های عصبی ریسمان › › دانلود پروژه سیستم عاملی شبکه های عصبی ریسمان › › ???? دانلود پروژه سیستم عاملی شبکه های عصبی ریسمان و همگان سازی برای دانلود بصورت جدید و کامل از سایت فایل سحرآمیز اینجا کلیک فرمایید شبکه عصبی بررسی شبکه پرسپترون چندلایه الگوریتم پس › شبکه عصبی بررسی شبکه پرسپترون چندلایه الگوریتم پس › یادآوری یادگیری نورون مصنوعی شبکه عصبی پرسپترون حل مسئله با شبکه عصبی شبکه عصبی پرسپترون چند لایه آموزش شبکه عصبی پرسپترون چند لایه الگوریتم پس انتشار خطا مثال عددی از الگوریتم پس انتشار خطا منابع آموزش یادگیری عمیق قبل از اینکه وارد بحث شبکه عصبی شویم، مطالب دو جلسه قبل را مرور کوتاهی خواهیم کرد ما گفتیم که یک نورون مصنوعی از ورودی‌ها، خروجی‌ها، وزن‌ها، بایاس‌ها و تابع فعالساز تشکیل شده است وزن‌ها و بایاس‌ها به صورت تصادفی مقداردهی می‌شوند ورودی‌ها در وزن‌ها ضرب می‌شوند، مقادیر به دست آمده با هم و سپس با بایاس جمع می‌شوند نتیجه از تابع فعالساز عبور می قبل از پیدایش شبکه عصبی ، در سال فرانک روزنبلات یک شبکه عصبی به نام پرسپترون ابداع کرد روزنبلات یک لایه‌ای از نورون‌ها را تشکیل داد و شبکه حاصل را پرسپترون نامید اما پرسپترون روزنبلات نیز مشکلات فراوانی داشت مینسکی و پپرت در سال کتابی به نام پرسپترون نوشتند آن‌ها تمامی توانایی‌ها و مشکلات پرسپترون را در این کتاب مورد بررسی قرار دا در جلسه قبل گفتیم که و کتابی به نام نوشتند آن‌ها در این کتاب ضعف‌های جدی پرسپترون را برشمردند آن‌ها بیان کردند که پرسپترون قادر به حل برخی مسائل پیش پا افتاده نیست یکی از این مسائل، مسئله است پرسپترون قادر به حل مسئله نیست زیرا آن‌ها فقط می‌توانند مسائلی که به صورت خطی تفکیک‌پذیر هستند را حل کنندو مسئله خ در بخش قبل نحوه حل مسئله با شبکه عصبی را بررسی کردیم در این بخش می‌خواهیم نحوه نمایش یک شبکه عصبی پرسپترون چندلایه را نشان دهیم سپس رابطه میان شبکه عصبی و شبکه عصبی عمیق را خواهیم گفت همچنین چند اصطلاحی که در این حوزه وجود دارد را معرفی خواهیم کرد گفتیم یک شبکه عصبی پرسپترون چندلایه از پشت هم قرار دادن چند پرسپترون حاصل خواهد شد یع یکی از مهم‌ترین ویژگی‌هایی که یک شبکه عصبی باید داشته باشد، توانایی یادگیریاست یعنی بر اساس یک الگوریتمِ یادگیری مشخص، وزن‌ها تغییر کنند تا آنجا که میزان اتلاف شبکه مینیمم شود ما فرآیند یادگیری را برای یک نورون مصنوعی در جلسه یک توضیح دادیم بیایید این فرآیند را مرور کنیم گفتیم که برای آموزش یک نورون مصنوعی یک تابع اتلاف و یک الگوریتم بهینه‌ساز سال‌ها محققان تقلا می‌کردند که روشی برای آموزش شبکه عصبی پیدا کنند تا اینکه در سال ، ، و مقاله‌ای منتشر کردند که راه حلی برای آموزش شبکه عصبی پرسپترون چند لایه ارائه کرده بود آن‌ها در مقاله خود الگوریتم یادگیری پس انتشار خطا را معرفی کردند این الگوریتم امروزه کماکان برای در این بخش برای فهم بهتر الگوریتم پس انتشار خطا، می‌خواهیم یک مثال حل کنیم در اینجا ما یک شبکه عصبی واقعی را نیاوردیم بلکه برای اینکه مسئله کمی ساده‌تر شود یک گراف آوردیم این گراف شامل گره‌هایی است که یک عمل خاص را انجام می‌دهد همان‌طور که مشاهده می‌کنید، این گراف ورودی دارد این ورودی‌ها منجر به خروجی می‌شوند این خروجی منجر به اتلاف در فهرست زیر، تعدادی از منابع خوب آموزش یادگیری عمیق را معرفی کرده‌ایم کتاب کتاب کتاب کتاب شبکه عصبی در این پست شبکه عصبی را معرفی کردیم الگوریتم پس انتشار خطا را بررسی کرده و یک مثال عددی آوردیم امیدوارم این آموزش مو جلسه‌ی چهارم شبکه عصبی پرسپترون چند لایه آکادمی › › جلسه‌ی چهارم شبکه عصبی پرسپترون چند لایه آکادمی › › · تئوری شبکه عصبی پرسپترون چند لایه این جلسه مهمترین جلسه دوره تخصصی پیاده‌سازی شبکه‌های عصبی در متلب است ما در جلسه سوم الگوریتم را مطرح کرده و در نهایت شبکه‌عصبی آدالاین را معرفی کردیم که یک شبکه عصبی بهینه برای مسائل کلاسبندی و رگرسیون است‌این شبکه‌ ایرادات شبکه عصبی پرسپترون تک لایه را برطرف کرد ولی خودش یک ‌ایراد اساسی دارد رگرسیون با و تنسورفلو انجام تا پروژه تخمین قیمت › رگرسیونباورگرسیون با و تنسورفلو انجام تا پروژه تخمین قیمت › رگرسیونباو · در این بخش می‌خواهیم یک پروژه رگرسیون با و تنسورفلو انجام دهیم در پروژه ای که انجام خواهیم داد، می‌خواهیم یک شبکه رگرسیون برای تخمین قیمت خانه بسازیم شبکه عصبی در متلب › › شبکه عصبی در متلب › › کد پروژه شرح پروژه با سلام نیازمند یک نفر برای نوشتن کد شبکه عصبی در متلب با قابلیت تغییر دستی تمام پارامتر های شبکه تمامی پارامتر های شبکه اعم از تعداد نرون، لایه، تابع فعالسازی، تنظبم نوع ورودی و در این شبکه نیازی نیست از توابع جداسازی داده ها برای تقسیم بندی به داده ها به آموزش، تست و اعتبار سنجی استفاده شود تمرین پیاده سازی شبکه عصبی › › تمرین پیاده سازی شبکه عصبی › › تمرین پیاده سازی شبکه عصبی چهار سال پیش منتشر شده تعداد بازدید کد پروژه شرح پروژه در این تمرین قصد داریم شبکه عصبی برای ۀزمایش داده های تست مجموعه ی پیاده سازی کنیم و میزان دقت شبکه عصبی پرسترون چند لایه آموزش یافته با استفاده از › › آموزششبکهشبکه عصبی پرسترون چند لایه آموزش یافته با استفاده از › › آموزششبکه نمونه ای از پیاده سازی شبکه عصبی پرسترون چند لایه آموزش یافته با استفاده از الگوریتم ها فراابتکاری در شکل زیر ارائه شده است نمودار بالایی روند بهبود با استفاده از الگوریتم ژنتیک را نشان

برای دانلود فایل بر روی دکمه زیر کلیک کنید

 

دانلود مستقیم و سریع

 

برای دانلود اینجا کلیک فرمایید ( پروژه OS project MLP )





:: برچسب‌ها: پروژه OS project MLP ,
:: بازدید از این مطلب : 34
|
امتیاز مطلب : 0
|
تعداد امتیازدهندگان : 0
|
مجموع امتیاز : 0
تاریخ انتشار : چهار شنبه 18 بهمن 1402 | نظرات ()
مطالب مرتبط با این پست
لیست
می توانید دیدگاه خود را بنویسید


نام
آدرس ایمیل
وب سایت/بلاگ
:) :( ;) :D
;)) :X :? :P
:* =(( :O };-
:B /:) =DD :S
-) :-(( :-| :-))
نظر خصوصی

 کد را وارد نمایید:

آپلود عکس دلخواه: